NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR.A.P.J. ABDUL KALAMTECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

In association with

Mercedes Benz India Pvt. Ltd., Pune

Evaluation Scheme & Syllabus

For Advance Diploma

in

Automotive Mechatronics

(Effective from the Session: 2024-25)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE) Advance Diploma in Automotive Mechatronics EVALUATION SCHEME

Evaluation Scheme & Examination:

There is continuous assessment and evaluation by Trainer through assignment sheets / worksheets. The marking scheme as below:

Sr. No.	Module Name	Examination	Examination heads (Marks/duration in minutes)			Total Marks
			Theory	Practical	T/W	
1	Mechanical	Module 1	50	50	50	150
2	Electronics	Module 2	50	50	50	150
3	System Module	Three Modules together	100	200	100	400
4	Soft Skills		50		50	100
5	Workshop- I				100	100
6	Workshop – II				100	100
		Total	250	400	350	1000

- 1. Theory question papers shall comprise of either objective type or multiple-choice questions.
- 2. All theory exams and continuous evaluation sheets (Term work) will be evaluated by ADAM Trainers from Institute.
- 3. Final Practical Examination will be conducted by Mercedes- Benz Academy Assessor.
- 4. Final practical exam shall comprise of 50% marks (30 minutes) for work plan preparation and 50% marks (30 minutes) for job execution.
- 5. Passing marks against each examination head shall be 50%

Re-assessment

In most unlikely cases, if the student could not perform in the final practical assessment and failed to full-fill the requirements to be qualified in the practical exam, re- assessment will be conducted.

- 1. Each such case will be discussed with ADAM trainers. An Individual study plan is to be developed and executed by the student & trainers.
- 2. All re- assessments shall happen at the institute. Student has to be present for re-assessment in institute / suitable location as decided by Academy.
- 3. Student will get maximum of 2 chances for re- assessment. If Student fails to qualify even after 2 chances, he will continue to work as bench technician (if he is employed by Mercedes- Benz Dealer Network) and shall appear regular course for Certified Maintenance Technician.
- 4. Institute may charge additional fees for the re-examination.

Module 2: Electronics

	4	
1. Study of D.C.	1. Understand concept of current & Voltage	
Technology	2. Use of multi-meter as voltmeter, ampere meter and	
	ohmmeter.	
	3. Assemble simple electrical circuit and measure the	
	current at different points.	
	4. Verification of Ohm's law.	
	5. Verification of linearity of resister.	
	6. Plot VI Characteristics using NTC resister.	
	7 Plot VI characteristic using PTC resister	
	8 Observe the behavior of varistor	
	9 Observe the behavior of LDR	
	10 Assemble a series circuit of resistors and measure	
	current and voltage at different points	
	11 Assamble a perallel circuit of resistors and massure	
	11. Assemble a paramet circuit of resistors and measure	
	12 Assemble a mined amine and annullal simultant	
	12. Assemble a mixed series and parallel circuit of	
	resistors and measure current and voltage at	
	different points.	
	13. Measure the output voltage of unloaded voltage	
	divider.	
	14. Measure the output voltage of unloaded voltage	
	15 Measure the output voltage of a loaded voltage	
	divider.	
	16. Measure the output voltage of a variable loaded	
	voltage divider.	
	17. To plot the curve of an equivalent voltage source.	
	18. Series circuiting of voltage sources.	
	19 Parallel circuiting of voltage sources	
	20 Determine the power converted into obmic	
	resistances (Power loss)	
2. AC current	1. To observe different AC waveforms on CRO.	
Technology	2. Measure frequency and calculate period and	
	wavelength of AC waveform.	
	3. To plot charging and discharging curves of a	
	capacitor.	
	4. To determine the phase difference between the current	
	through the capacitor and voltage across the capacitor.	
	5. To determine capacitive reactance of a capacitor.	
	6. To measure current and voltage in a series circuit of	
	capacitor.	
	/. To measure current and voltage in a parallel circuit of a capacitor	
	8 To plot charging and discharging ourses of inductor	
	0. To prot charging and discharging curves of inductor.	
	5. To acternine the phase anterence between the current through the inductor and voltage across the	
	unough the muticion and voltage across the	
1		

	inductor.	
	10. To determine inductive reactance of inductor.	
	11. To measure current and voltage in a series circuit of inductor.	
	12. To measure current and voltage in a parallel circuit of an inductor	
	13. Determine the transformation ratio on the primary and	
	secondary side of a transformer with different number	
	of windings.	
3.Semi-conductor	1. To plot the VI characteristics of P-N junction diode	
Components and	2. To observe the rectification effect of a diode with	
devices.	filter capacitor and without filter capacitor.	
	3. To plot the waveforms using bridge rectifiers.	
	4. To plot the characteristics of Zener diodes.	
	5. To observe Zener diode as a voltage regulator.	
	6. To record the characteristic of a LED.	
	7. To plot VI characteristics of a bi-polar junction	
	transistor.	
	8. To observe transistor as a switch.	
	9. To plot output wave forms of an Astable	
	multivibrator.	
	IU. To plot output wave forms of a monostable	
	multivibrator.	
	11. To plot output wave forms of a Bi-stable multi vibrator	
	12 To observe transistor as an amplifier	
	12. To observe transistor as an amplimer.	
4. Digital	1. Construct AND, OR, NAND, NOT gates and verify the	
Electronics	truth table.	
	2. Verify behavior of multiplexer.	
	3. Verify the behavior of A to D and D to A converters.	
	4. Verify the truth table of SR, JK, D and T flip-flops.	
5. Wiring diagram	1. To know symbols of components connectors wires	
	2. Interpret the wiring diagram	
	3 To understand different electrical circuits.	
6. CAN data bus	1. To understand how the control units are connected	
	using different CAN bus systems.	
7. Engine Electrics	1. To perform Alternator test	
	2. To perform Starter circuit test	
	3. To test battery	
9 Engine	1 ME SEL voltage gupply function	
o.Engine Managamant	INE-SFI voltage supply function ME SFI function and injection system function	
wianagement	2. IVIE-SFI Tuel Ignition and injection system function.	
Systems for	5. To measure the output voltage & to observe the	
Gasonne engines	4 To measure the output voltage & to observe the	
	output waveform of a camshaft sensor	
	5 ME-SFI engine speed signal function	
	1 O . THE OFF CHEMIC SPECIA SIGNAL FUNCTION.	

6. Synchronizing fuel injection and firing order
function.
7. ME-SFI fuel supply function.
8. ME-SFI fuel pump actuation function.
9. ME-SFI consumption signal function.
10. ME-SFI fuel reserve signal function.
11. ME-SFI cam shaft adjustment function.
12. ME-SFI electronic adjustment function.
13. ME-SFI idle speed control function.
14. ME-SFI throttle valve damping function.
15. ME-SFI O2 sensor control function.
16 . ME-SFI oxygen sensor heating function.
17. ME-SFI catalytic converter efficiency monitoring
function.
18. ME-SFI air injection function.
19 . ME-SFI and knock control function.
20 . ME-SFI engine oil information function.
21. ME-SFI starter control function.
22 . ME-SFI starting function.
23. ME-SFI diagnostic fault memory function.
24. ME-SFI driving mode function.
25. ME-SFI idling function.
26. ME-SFI ignition ON function.
27. ME-SFI Limiting maximum speed function.
28. ME-SFI ignition system function.
29. ME-SFI start quantity control function.
30 . ME-SFI acceleration enrichment function.
31. ME-SFI Part Load/Full operation.
32. ME-SFI Limiting Maximum Vehicle Speed function.
33 . ME-SFI Fan control function.
34. ME-SFI Self adjustment function.
35. ME-SFI Correction programming function.
36 . ME-SFI TWC heating function.
37. ME-SFI Smooth running analysis function.
38 . ME-SFI Transmission shift point delay function.
39 . ME-SFI Transmission over load protection function.
40. ME-SFI Overheating and pinging protection function.
41. ME-SFI intake air correction function.
42. ME-SFI input signals.
43. ME-SFI Output signals.
44. ME-SFI Function diagram.